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Summary

A conical Euler code was developed to study unsteady vortex-dominated flows

about rolling highly-swept delta wings, undergoing either forced or free-to-roll

motions including active roll suppression. The flow solver of the code involves a

multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial

discretization of the Euler equations on an unstructured grid of triangles. The code

allows for the additional analysis of the free-to-roll case, by including the rigid-body

equation of motion for its simultaneous time integration with the governing flow

equations. Results are presented for a 75 ° swept sharp-leading-edge delta wing at a

freestream Mach number of 1.2 and at cz= 10° and 30 ° angle of attack. At the lower

angle of attack of cz= 10°, a forced harmonic analysis indicates that the rolling moment

coefficient provides a positive damping which is verified in a free-to-roll calculation.

In contrast, at the higher angle of attack of c_= 30 °, a forced harmonic analysis indicates

that the rolling moment coefficient provides a negative damping at the small roll

amplitudes. A free-to-roll calculation for this case produces an initially divergent

response, but as the amplitude of motion grows with time, the response transitions to a

wing-rock type of limit cycle oscillation. The wing rocking motion may be actively

suppressed, however, through the use of a rate-feedback control law and

antisymmetrically-deflected leading-edge flaps. The paper provides descriptions of the

conical Euler flow solver and the free-to-roll analysis. Results are presented which

give insight into the flow physics associated with unsteady vortical flows about forced

and free-to-roll delta wings, including the active roll suppression of this wing-rock

phenomenon.



Introduction

In recent years, the understanding and prediction of the complex flows about

modern aircraft at high angles of attack have been research topics that have generated

much interest within the fluid dynamics community. 1,2 These aircraft typically have

thin highly-swept lifting surfaces which produce a vortical flow over the leeward-side

of the vehicle at high angles of attack. This vortical flow can have beneficial effects on

performance, such as lift augmentation at high-s, but may also have adverse effects

such as structural fatigue due to tail buffet and also stability and control problems such

as wing rock, wing drop, nose slice, and pitch-up. 3 Consequently, considerable work

has been done experimentally to try to understand the basic flow physics involved in

vortical flows about delta wings at high angles of attack. Experimental research efforts

directed towards understanding and documenting steady vortical flows are typified by the

detailed flowfield measurements about simple, cranked, and canard-wing delta

configurations at low speed by Hummel 4 and low speed tests on a 75° swept delta wing by

Kjelgaard and Sellers. 5 For supersonic-freestream Mach numbers, vortical flows have

been measured by Squire 6 for an elliptic cone delta wing and by Miller and Wood 7 for a

series of swept sharp-leading-edge delta wings. Efforts on investigating unsteady

vortical flows experimentally have been reported by Nguyen et al. 8 for forced harmonic

and free-to-roll motions of an 80 ° swept delta wing in low speed flow. In Ref. 8, the

wing was found to undergo self-induced periodic roll oscillations known as wing rock,

for angles of attack greater than 25 °. Levin and Katz 9 tested both 76 ° and 80 ° swept

delta wings and found that only the 80 ° model would exhibit wing rock at high-_.

Further sludies have been performed by Nelson and co-workers 10,11 at Notre Dame

University. These studies have shown, for example, the time histories of the vortex core

position during a cycle of wing rock 10 and the static and dynamic effects due to vortex

breakdown.11 Also Ng et al. 12 have recently reported experimental results obtained in

a water tunnel which show wing rock for several different delta wing planforms along

with detailed flow visualization diagrams. These studies 4-12 have contributed



significantlyto the understandingof steadyand unsteadyvortex-dominatedflowfields,

althoughmuchworkremainsto bedone.

Froma computationalpointof view,considerableeffort has also been spenton

developingmethodsof predictingsteady and unsteadyvortex-dominatedflows.13,14

Hoeijmakers, 13 for example, gives a review of computationalmethods for the

determinationof steady vortical flow characteristicswith an emphasison classical

methods includingdiscrete vortex, cloud-in-cell, panel, vortex layer with finite core,

leading-edgesuctionanalogy,andvortex-lattice.With respectto unsteadymethods,Hsu

and Lan15 presented a nonlinear mathematical model for calculating wing-rock

characteristics based on aerodynamic derivatives evaluated using steady-flow

aerodynamicsat average dynamicconditions. Researchersat Virginia Polytechnic

Institute and State University16-18 have simulated wing rock using an unsteady

vortex-latticemethodto predictthe aerodynamicloadsand have integratedthe equation

of rolling motionusing a predictor-correclormethod. The methodsof both Ref. 15 and

Refs. 16-18 predicted with reasonable accuracy the low-speed wing rock

characleristicsof the delta wings studiedin Refs. 8 and 9. Useof the more modern

computationalfluid dynamics(CFD) techniquesfor the predictionof vortex-dominated

flows14 have primarily focused on steady applications,19-26 although there are

notableexceptionswhereapplicationshave beenmadeto rollingdelta wingsundergoing

forced harmonic27-29 and free-to-roll30 motions. Kandil and Chuang,for example,

have reportedresultsfor rollingdelta wings obtainedusingthe conical Eulerequations

for sharp-leading-edgewings27 and the conicalNavier-Stokesequationsfor rounded-

leading-edge wings.28 Batina29 has also presentedresults for a rolling delta wing

obtained using a conical Euler flow solver basedon the use of unstructuredgrids of

triangles. Lee and Batina30 extendedlhe methodsof Ref. 29 to includea free-to-roll

capabilityand showedresultsfor a freely rolling della wing that exhibiteda limit cycle

or wing-rock type motion.
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The objective of the current research is to study unsteadyvortex-dominated

flowfieldsby usingthe conicalEuler equationsas an efficient first step to investigating

the full three-dimensionalproblem. Reference30 reportedthe developmentof a conical

Euler code to study unsteadyvortex-dominatedflows about rolling highly-sweptdelta

wings undergoingforced harmonicand free-to-rollmotions. The purposeof this paper

is to report lhe extension of lhese methods for the study of flows about delta wings

undergoing pulsed motions and free-to-roll motions including roll suppression. The flow

solver of the code is similar to that of Ref. 29, which involves a multistage Runge-Kutta

time-stepping scheme and a finite-volume spatial discretization of the Euler equations

on an unstructured grid of triangles. The code was modified to allow for the additional

analysis of the free-to-roll case, by including the rigid body equation of motion for its

simultaneous time integration with the governing flow equations. The analysis also

includes a capability for implementing an active feedback control law with

antisymmetrically-deflected leading-edge flaps for roll suppression of the wing-

rocking motion. Although limited experimental work has been conducted on the use of

flaps 31 and leading edge blowing32, 33 for roll control, even less analytical and

numerical work 34 has been performed. Results are presented here for a 75 ° swept

sharp-leading-edge delta wing at a freestream Mach number of 1.2 and at (x = 10° and

30 ° angle of attack. The results demonstrate the successful CFD simulation of a wing-

rock phenomenon including its active roll suppression. The paper gives descriptions of

the conical Euler flow solver and free-to-roll analysis. The results give insight into the

flow physics associated with unsteady vortical flows about forced and free-to-roll delta

wings, including the active roll suppression of this wing-rock phenomenon.
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freestream speed of sound

rolling moment coefficient

rolling moment coefficient transfer function due to flap deflection
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total energy
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mass moment of inertia about longitudinal axis

reduced frequency based on one half of the root chord,
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nondimensional time,
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component of velocity vector in x-direction

component of velocity vector in y-direction

component of velocity vector in z-direction

angle of attack

ratio of specific heats

leading-edge flap deflection angle, positive clockwise when viewed from
aft

nondimensional time step

structural damping

density

freestream density

instantaneous roll angle, positive clockwise when viewed from aft

harmonic and pulse roll angle amplitude

planform area

control gain

rolling moment, positive clockwise when viewed from aft

freestream Mach number

freestream dynamic pressure



Governing Eauations

The flow is governed by the time-dependent Euler equations which may be written in

conservation law form as

aQ+ aE aF aG -0
a-i- + az (i)

where Q is the vector of conserved variables defined by

Q = [p,pu,pv,pw,e] T
(2)

and E, F, and G are the convective or inviscid fluxes given by

E_..

pU

pUu+p

pUv

pUw

[e+p)U+xtP

F_

pV

pVu

pVv +p

pVw

[e+p)V+Yt P

G_

pW

pWu

pWv

pWw +p

(e+p)W+ztp

The contravariant velocities U, V, and W are defined by

U=u-x t V=v-y t W=w-z t

(3a)

(3b)

(3c)

(4)
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where xt, Yt, and zt are the grid speeds in the x, y, and z directions, respectively. The

pressure p is determined by the equation of state for a perfect gas

1 2
p = (_'- 1) [e - _. p (u 2 + v + w2)] ( 5 )

and the equations have been nondimensionalized by the freestream density and the

freestream speed of sound.

If interest is restricted to supersonic flow past conical bodies, then the conical flow

assumption can be made. This reduces the problem from three dimensions to two

dimensions, which significantly decreases the computational resources that are required

to investigate such flows. The conical flow assumption is exact for steady inviscid

supersonic flow. For unsteady flows, however, the conical assumption implies an

instantaneous propagation of disturbances in radial directions. The conical flow

assumption involves a change of variables according to

x x (6)

The three-dimensional Euler equations then reduce to

o_-T-+ (F-TIE)+ (G- _E) +2E=0 (7)

Equation (7) may be rewritten in integral form for solution as

--_-_! ednd_+f_ [(F-TIE) dC_-(G-C_E)dTI]+f 2EdTId_=O_t

where the second integral is a boundary integral resulting from

divergence theorem.

(8)

application of the
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Euler Solution Algorithm

The unsteady conical Euler equations are solved using the multistage Runge-Kutta

time-stepping scheme of Ref. 29. This algorithm uses a finite-volume spatial

discretization for solution on an unstructured grid made up of triangles. The original

algorithm of Ref. 29 was a node-based scheme whereby the flow variables are stored at

the vertices of the triangles. A second algorithm, a cell-centered scheme, was employed

in the present study. This second scheme is based on unpublished work of the second

author. In the cell-centered scheme, the flow variables are stored at the centroids of the

triangles. In both algorithms, artificial dissipation is added explicitly to prevent

oscillations near shock waves and to damp high-frequency uncoupled error modes.

Specifically, an adaptive blend of harmonic and biharmonic operators is used,

corresponding to second and fourth difference dissipation, respectively. The biharmonic

operator provides a background dissipation to damp high frequency errors and the

harmonic operator prevents oscillations near shock waves. The algorithms also employ

enthalpy damping, local time stepping, and implicit residual smoothing to accelerate

convergence to steady state. The local time stepping uses the maximum allowable step

size at each grid point for the node-based scheme and for each triangle in the cell-

centered scheme, as determined by a local stability analysis. The implicit residual

smoothing permits the use of local time steps that are larger than those imposed by the

Courant-Friedrichs-Lewy stability condition. This is achieved by averaging the

residuals implicitly with neighboring values. A time-accurate version of the residual

smoothing is also used for global time-stepping during unsteady applications of the code.

With respect to boundary conditions, freestream conditions are applied along the

farfield boundary, and a reasonably large computational grid is used so that the bow

shock is captured as a part of the solution. A flow tangency (or slip) condition is applied

to the inner boundary which represents the wing. Also, for unsteady applications, the

grid is moved to conform to the instantaneous position of the wing using a combination of

rigid body rotation and deforming mesh movement. A deforming mesh algorithm



discussedbelow is used to deformthe grid about the deflectedleading-edgeflaps in a

wing-fixedcoordinatesystem. This deformedmesh is then rotatedas a rigid body to

accountfor the instantaneousroll angleof the wing. In this application,grid speedsare

computedat the nodesand are includedin the governingequationsto accountfor the

relativemotionbetweenthe grid and the fluid.

Deforming Mesh Algorithm

The deforming mesh algorithm as developed in Ref. 35, models the triangulated

mesh as a spring network where each edge of a triangle represents a spring with

stiffness inversely proportional to the square of its length. In this method, the grid

points along the outer boundary are held fixed while the grid points along the wing

(inner boundary) are specified. The locations of the interior points are then determined

by solving the static equilibrium equations which result from a summation of forces at

each node in both the 11and t_ directions. The solution of the equilibrium equations is

carried out using a predictor-corrector method which first predicts the new locations of

the interior points by extrapolation from the previous time levels and then corrects

these locations by using several Jacobi iterations of the static equilibrium equations.

The predictor-corrector procedure is relatively efficient since it requires only a few

Jacobi iterations to efficiently move the mesh.

Pulse Transfer-Function Analvsi,_

Generally, unsteady load coefficients can be obtained by calculating several cycles of

a harmonically forced oscillation with the determination of the load based on the last

cycle of oscillation. This method of harmonic oscillation requires one flowfield

calculation for each value of reduced frequency of interest. By contrast, the unsteady

load coefficients may be determined for a wide range of reduced frequency in a single

flowfield calculation using the pulse transfer-function analysis. The pulse transfer-

function analysis has been employed in the past to determine the generalized



aerodynamic-forces(GAFs)which are used in aeroelastic analyses.36, 37 In the pulse

analysis, the unsteady force coefficient is computed indirectly from the response of the

flowfield due to a smoothly varying, exponentially-shaped pulse. Results computed

using the pulse analysis for a pitching flat-plate airfoil were presented in Ref. 36.

These results were in good agreement with parallel linear theory calculations which

validated the accuracy of the analysis. Applications to transonic airfoil cases were also

in good agreement with the GAFs computed using the harmonic method which tends to

verify that the analysis is valid for predicting the small perturbation response about a

nonlinear flowfield. 37 Therefore, because of the computational efficiency of the pulse

transfer-function analysis, the capability was implemented within the conical Euler

code to calculate the rolling moment coefficient due to roll, Ct_ , of a delta wing. The

pulse is expressed as

(_(_) _0 e-M2({-ic)2= (9)

where _o is the pulse amplitude, Moo is the freestream Mach number which determines

the width of the pulse, and t c is the nondimensional time at the center of the pulse. A

small rolling pulse is prescribed for the delta wing, and the aerodynamic transient is

calculated. The aerodynamic transient is then used to obtain the rolling moment

coefficient in the frequency domain by a transfer-function analysis. In this case, a fast

Fourier transform (FFT) of the rolling moment coefficient is divided by a FFT of the

pulsed rolling motion. The transform assumes that the system is locally linear which is

shown to be a valid assumption for the pulse amplitude of 1° used in the present study.

Free-to-Roll Analysis

In this section, the roll equation of motion, the time-marching solution procedure

and the active roll suppression are described.

Roll Equation of Motion

The equation of motion for a rolling delta wing can be expressed as

10



Ixx $ (10)

where _ is the roll angle which is positive clockwise when viewed from aft, Ix x is the

mass moment of inertia about the longitudinal axis, t is the aerodynamic rolling moment

also positive clockwise, and Nx is a structural damping term (dot superscripts indicate

differentiation with respect to time). In order to nondimensionalize Eq. (10), the

angular rates are multiplied by the root chord of the delta wing, c, and divided by the

freestream speed of sound, a.. The rolling moment coefficient is defined as

t
Ct---

qooSc

where qoo is the freestream dynamic pressure and S is the planform area.

nondimensional rolling equation of motion can then be written as

(11)

The

where C1 =

_"=C 1 Ct -C 2 _'

M 2 S c3 p,,o

2 Ixx

(12)

(13a)

(13b)

Note that the prime superscripts indicate differentiation with respect 1o

time, t. The structural damping term is added to simulate a sting bearing mount.

type of bearing mount was used in the low-speed wind tunnel investigations of wing

reported in Refs. 8-11.

nondimensional

This

rock

Time-Marching Solution

The solution procedure for the time integration of Eq. (12) is based on a finite

difference representation of the time derivatives. The time derivatives are expressed in

11



terms of second-order-accuratefinite-difference approximations. After substituting

these expressions into Eq. (12), the roll angle at time level n+l can be expressed in

terms of the roll angle at previous time levels as

n + 1 A_2 + (5 + 2 C 2 _t) _ncn + 1 = [C 1 Ct

-(4+1C2Ai)_) n-1+_n-2]/[3C2Ai+2] (14)

p.n+l
The rolling moment at time level n+l, "t , is estimated from a linear extrapolation of

Ct at the previous two time levels. This predicted value of C t is used to determine the

roll angle at time level n+l, _n+l. The flowfield is then calculated about the wing at

this roll angle, and the actual value of the rolling moment coefficient is determined. The

rolling moment coefficient is then updated for use in the next time step. Due to the

explicit time-marching of the Euler code used in lhis study, the time steps required for

stability were small, and thus, it was not necessary to iterate between the roll angle

calculation and the flowfield calculation at each time step. Previous studies of time-

marching aeroelastic analyses using a similar explicit scheme have shown lhis to be the

case (R. D. Rausch: Personal Communication, October 31, 1989). For a free-to-roll

calculation, steady-state initial conditions are specified for _)- 1, _)0, C_1, and C O. An

initial angular velocity is imposed to provide an initial perturbation to the wing.

A_;tive Roll Suppression

Active roll suppression is achieved through the addition of an active rate-feedback

control law to the time-marching solution procedure. A simple control law was chosen

of the form

q5 = Kv_" (1 5)

where Kv is the control gain and ,5 is both the left and right leading-edge flap deflection

angles measured positive clockwise from the flap hinge lines. The control law is applied

to both left and right flaps simultaneously which results in an antisymmetric

configuration. The time-marching solution procedure is the same as that which was

12



describedin the precedingsection. However,after the roll angle at time level n+l is

determined from Eq. (14), the flap deflection angle is determined from Eq. (15) using a

second-order-accurate finite-difference expression for the angular velocity (I)'. The

deforming mesh algorithm is then applied in addition to the rigid rotation to move the

mesh to its new position. As before, the flowfield is calculated about the wing at its new

position, and the rolling moment coefficient is determined and then updated for use in the

next time step. The same initial conditions as described in the preceding section are

applied to begin the calculation.

Results and Discussion

Calculations were performed for a 75 ° della wing at a freestream Mach number of

1.2 and at o_ = 10° and 30 ° angle of attack. The wing has thickness and sharp leading

edges as indicated in the partial view of the grid shown in Fig.l. The thickness-to-span

ratio at this cross section is 0.025 and the lower edge bevel angle is 10°. The grid,

which was generated using an advancing front method, 38 has a total of 4226 nodes and

8299 elements. The grid was designed to be fine on the leeward side of the wing where

the dominant flow features are expected to occur and to be coarse on the windward side of

the wing where the flow gradients are expected to be small. As discussed previously, for

unsteady applications, the mesh is rotated as a rigid body to conform to the instantaneous

position of the main part of the wing. The mesh is deformed locally near the leading

edges to conform to the instantaneous position of the flaps. As examples of mesh

movement, partial views of the left leading-edge flap at a positive (5 = 10°) and a

negative ((5 = -10 `)) flap deflection angle are shown in Figs. 2(a) and 2(b),

respectively, with the wing rotated through 10° of motion. The hinge point of the flap

coincides with the inboard bevel edge and so the flap length is approximately 28% of the

semi-span. As shown in the figure, the mesh moves smoothly as the wing rolls and the

flaps are deflected.

13



Steady and unsteadyresults includingthe pulse, forced harmonicand free-to-roll

calculationsare presentedfor both (x= 10° and 30°. The rate-feedbackcontrollaw is

appliedto the a = 30° case since it was the only free-to-rollcase to exhibit a wing-

rock behavior.

Steady-State Results

Steady-state results were obtained to determine the basic character of the vortical

flows and to provide starting solutions for the unsteady cases. A comparison of total

pressure loss contours from these solutions, shown in Fig. 3, illustrates the effects of

angle of attack. For the (x = 10° angle of attack shown in Fig. 3(a), the contours indicate

that the flow separates from each of the leading edges of the wing producing two small,

widely-spaced circular vortices. In contrast, at the (x = 30 ° angle of attack, shown in

Fig. 3(b), the contours indicate that the flow separating from the leading edges produces

two large, more closely-spaced circular vortices. Also, as the flow accelerates beneath

the vortices of Fig. 3(b), vertically-oriented crossflow shock waves are formed on the

outboard portions of the wing. Weaker shock waves are formed on the top of each vortex.

These vertically-oriented shocks are located above the core of the vortex. A weaker

horizontal shock wave is also present between the vortices.

Pulse Transfer-Function Results

The pulse transfer-function analysis was performed to determine the small

amplitude stability and response characteristics of the wing. A stability analysis was

derived by first recalling the nondimensional rolling equation of motion given by

(I)" = C1 Ct - C2 (I)'

For simplicity, the structural damping term (C2) is set equal to zero resulting in

(12)

(_" = C 1 C! (1 6)

14



Assumingthat the rolling moment coefficient can be written as the product of the rolling

moment coefficient transfer function Ct_ ' and the roll angle _,

Ct

then for simple harmonic motion

(17)

C t = [Re(Ct, _ ) +ilm(Ct_ )]_ (18)

where Re(Cry) and Im(Ct_ ) represent the real and imaginary parts of the first

harmonic component of Ctq ,, respectively. In this case, the real part of the rolling

moment coefficient transfer-function represents an aerodynamic stiffness and the

imaginary part represents an aerodynamic damping. Therefore, for this simple one

degree-of-freedom case, the sign of Im(Ct_) determines the stability in roll of the

wing for small perturbations. In other words, a negative Im(Ctq) indicates a positive

aerodynamic damping which would cause a free-to-roll wing to be stable, and a positive

I m(Ct_) indicates a negative aerodynamic damping which would cause a free-to-roll

wing to be unstable.

The pulse transfer-function analysis can be used to determine the rolling moment

coefficient transfer-function and therefore the stability of the wing for a wide range of

reduced frequency k (based on one-half of the wing root chord). A comparison of the

pulse transfer-function analysis results, shown in Fig. 4, indicates the effects of angle

of attack. At the lower angle of attack of cz = 10° shown in Fig. 4(a), the Im(Ctq) is

negative for all values of reduced frequency which is indicative of stability in roll for

small perturbations. In contrast, at the higher cc = 30 ° angle of attack shown in Fig.

4(b), the imaginary part is positive for k < 0.5 which is indicative of instability in

roll. Also, for cc = 30 °, the Re(Ct_ ) is negative in this range of reduced frequency

15



which corresponds to a positive aerodynamic stiffness. The roll response will therefore

oscillate (with increasing amplitude) rather than give rise to a static instability known

as wing drop.

The accuracy of the pulse analysis is verified by harmonic analyses performed at

five values of reduced frequency: k = 0.0, 0.25, 0.50, 0.75 and 1.0. In these analyses,

the wing was oscillated harmonically in roll with an amplitude of 1° for three cycles of

motion with the rolling moment coefficient determined from the last cycle. The results

of the harmonic analyses are compared with the rolling moment coefficient transfer-

functions in Fig. 4. The good agreement between pulse and harmonic analyses therefore

validates the accuracy of the pulse results for the cases considered.

Forced Harmonic Results

Because the pulse transfer-function analysis is limited to small perturbations, the

large perturbation aerodynamic characteristics of the delta wing were investigated with

a forced harmonic analysis. A reduced frequency of k -- 0.25 was chosen for this

analysis. This value lies at the midpoint of the range of reduced frequency identified by

the pulse analysis as being an unstable condition for the free-to-roll wing at a-- 30 °.

Three amplitudes of motion, (_o = 5% 15 ° and 35°, were considered at both a= 10 ° and

e_= 30 °. The nondimensional timestep used for all cases was 0.00262. A comparison of

rolling moment coefficient versus roll angle for each of these cases is shown in Fig. 5 to

illustrate the effects of both roll amplitude and angle of attack. For the a= 10 ° angle of

attack cases shown in Fig. 5(a), the results show a counter-clockwise-oriented loop for

each roll amplitude which would produce a convergent (stable) response if the wing

were free to roll. This prediction of a stable response at the smallest roll amplitude is

consistent with the pulse transfer-function results of Fig. 4(a). Also as the roll

amplitude is increased from _o = 5° to 15°, the rolling moment coefficient increases

linearly. (Note the change in scaling of the vertical axis.) However, as the roll

amplitude is further increased to _o-- 35°, some nonlinear aerodynamic

16



characteristicsare exhibited in the "pinching" of the loop at the extreme roll angles

althoughthe free-to-rollresponseis still predictedto be stable. For the a= 30° angle

of attack cases shown in Fig. 5(b), the results show clockwise-oriented loops for the (_o

= 5° and 15° roll amplitudes which would produce a divergent (unstable) response if

the wing were free to roll. This prediction of an unstable free-to-roll response at the

smaller roll amplitudes is consistent with the pulse transfer-function results of Fig.

4(b). At _o = 35°, counter-clockwise-oriented loops have formed at the extreme roll

angles which consequently, would have a stabilizing effect on the free-to-roll response.

The formation of these stabilizing loops was not, of course, predicted by the pulse

analysis. In contrast with the _= 10 ° angle of attack case, at the higher angle of attack of

30 °, the nonlinear aerodynamic effects at the larger roll amplitudes result in a change

in the stability characteristics of the wing.

Free-to-Roll Results

The free-to-roll results were obtained for the flow conditions and structural and

inertial parameter values listed in Table 1. The structural and inertial properties used

in these calculations are loosely based on the characterisitcs of the models used in the

experimental study of wing rock in Ref. 9. The initial angular velocity imposed on the

wing was _'= 0.003 and the nondimensional timestep used was 0.004. The resulting

roll angle response, shown in Fig. 6(a) for the _= 10 ° case, indicates that after the

initial perturbation, the oscillatory response converges to its initial steady-state value.

This stable free-to-roll response is consistent with the pulse and forced harmonic

results of Figs. 4(a) and 5(a). The roll angle response, shown Fig. 6(b), for the a=

30 ° case, indicates that initially the oscillatory response diverges for small values of

roll amplitude which is consistent with the small amplitude pulse and harmonic results

of Figs. 4(b) and 5(b). As the roll angle increases to around 35 °, the rate of divergence

decreases due to the stabilizing aerodynamics (counter-clockwise loops in the rolling

moment coefficient at the extreme roll angles) shown in Fig. 5(b). Finally, the

17



responsereachesa maximum amplitude of motion at approximately 38 ° corresponding

to a limit cycle. The reduced frequency of the limit cycle is k = 0.103. These results

are similar in nature to those obtained by Arena and Nelson 11 in a low-speed

experimental investigation of wing rock. The wing- rock time history from Ref. 11,

shown in Fig. 7, was obtained for an 80 ° swept delta wing at 30 ° angle of attack. The

reduced frequency of the wing rock in this case was approximately 0.125. Although the

case considered in the present study is different from that of Ref. 11 (the data from Refs.

8-12 are all for low speed flows whereas the conical Euler code is limited to supersonic

freestream applications), the similarity between the two sets of results in Figs. 6(b)

and 7 is noteworthy and gives credibility to the present calculations.

Active Roll-Suppression Results

An active rate-feedback control law was then implemented in an attempt to suppress

the wing-rock motion. To determine an appropriate value for the gain, a stability

analysis was derived by again recalling the nondimensional rolling equation of motion

given by

t_" = C 1 C! (1 6)

Assuming that the rolling moment coefficient can be written as the superposition of the

rolling moment coefficient transfer functions for $ and 5,

Ct + Cts5

Substituting the control law from Eq. (15) into Eq. (19) gives

(19)

C t=Ct_+Ct Kv_'

Then for simple harmonic motion

(20)
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C t = {[Re(Ct. ) - kMK, Im(Ct, )]

+i [Im(Ct. )+ kM.K_ Re(Ct,)]} _ (2 1 )

On the right-hand side of Eq. (21), as before, the first term represents an aerodynamic

stiffness, and the second term represents an aerodynamic damping. Therefore,

stabilizing the motion of the wing requires that

Im(Ct_ ,)+k M,o K v Re(Cry)<0 (22)

Solving for the gain yields

-1 Im(Ct_ )
Kv>_

k Moo Re(Ct_ ) ( 2 3 )

A pulse analysis was performed to determine the rolling moment coefficient transfer

function for _5at a = 30 ° angle of attack (pulse amplitude of 5o = 1°). The transfer

function from this analysis, shown in Fig. 8, indicates that for values of reduced

frequency less than 0.5, the real part of Ct_ is negative. Considering Eq. (23) and

recalling from Fig. 4(b) that the values of Im(C/_) for k<0.5 are positive, the value of

Kv must, therefore, be positive to suppress wing rock. The value of Kv actually needs to

be greater than that determined by evaluating the right-hand side of Eq. (23) in order to

stabilize the wing since the above analysis assumes simple harmonic motion. For the

flow conditions considered here, for example, the value for the gain that produces a

neutrally stable (or simple harmonic) response is Kv = 0.35. The free-to-roll

analysis with active rate-feedback control was performed over a range of control gains:

Kv = 0.25, 0.40, and 0.50. The time-histories of the wing motion are shown in Fig. 9.

The time-history for a control gain of Kv = 0.5 indicates a damped response as expected.

Similarly, the response for control gain of Kv = 0.4 is also damped although at a smaller

rate than the Kv = 0.5 case. The response of the wing for a control gain of Kv = 0.25

shown in Fig. 9 indicates that the response is no longer damped. However, a comparison
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with the results of Fig. 6(b) shows that the active rate-feedback control has a

stabilizingeffecton the free responseat theseconditions.

Concluding Remarks

A conical Euler code was developed to study unsteady vortex-dominated flows about

rolling highly-swept delta wings, undergoing either forced or free-to-roll motions

including active roll suppression. The flow solver of the code involved a multistage

Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization of

the Euler equations on an unstructured grid of triangles. The code allows for the

additional analysis of the free-to-roll case, by including the rigid-body equation of

motion for its simultaneous time integration with the governing flow equations. Results

were presented for a 75 ° swept sharp-leading-edge delta Wing at a freestream Mach

number of 1.2 and at _ = 10 ° and 30 ° angle of attack. At the lower angle of attack of

= 10 °, for example, a forced harmonic motion produced a rolling moment coefficient

versus roll angle response that is counter-clockwise in orientation. This counter-

clockwise response is indicative of stability in roll which was verified in a free-to-roll

calculation. In contrast, at the higher angle of attack of _ -- 30 °, the forced harmonic

response was clockwise in orientation which indicates instability in roll. A free-to-roll

calculation for this case produced an initially divergent response, but as the amplitude of

motion grew with time the response transitioned to a limit cycle phenomenon known as

wing rock. The wing rocking motion was subsequently suppressed, however, through the

use of an active rate-feedback control law and antisymmetrically-deflected leading-edge

flaps.
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Table1 Summaryof structuralparametervaluesand flowconditions
for the free-to-roll calculation.

Parameter Value

c 0.2820 m

]xx 0.1776 x 10-3 Kg m2

_x 0.0 Kg m2/s
P_ 0.526 Kg/m3
a_,, 312 m/s

Fig. 1 Partialview of unstructuredgrid abouta 75° sweptdelta wing.
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(a) a=lO °.

(b) _ = -I0 °.

Fig. 2 Partial view of deforming mesh about deflected leading-edge flap.
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(a) _ = I0 °.

(b) a = 30 °.

Fig. 3 Angle of attack effects on steady state total pressure loss contours for a 75° swept
delta wing at Moo = 1.2.
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Fig. 4 Angle of attack effects on the rolling moment coefficient transfer-function versus

reduced frequency for a 75 ° swept delta wing at M. = 1.2 (pulse amplitude

% = 1o)
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Fig. 5
Angle of attack effects on the rolling moment coefficient versus instantaneous roll

angle for a 75 ° swept delta wing at M,,, = 1.2 and k = 0.25.
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Fig. 6 Angle of attack effects on free-to-roll response for a 75 ° swept delta wing

at ]Vlo_ = 1.2.
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